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Abstract

Text effects transfer technology automatically makes the text
dramatically more impressive. However, previous style trans-
fer methods either study the model for general style, which
cannot handle the highly-structured text effects along the
glyph, or require manual design of subtle matching criteria
for text effects. In this paper, we focus on the use of the po-
werful representation abilities of deep neural features for text
effects transfer. For this purpose, we propose a novel Tex-
ture Effects Transfer GAN (TET-GAN), which consists of a
stylization subnetwork and a destylization subnetwork. The
key idea is to train our network to accomplish both the ob-
jective of style transfer and style removal, so that it can learn
to disentangle and recombine the content and style features
of text effects images. To support the training of our network,
we propose a new text effects dataset with as much as 64 pro-
fessionally designed styles on 837 characters. We show that
the disentangled feature representations enable us to trans-
fer or remove all these styles on arbitrary glyphs using one
network. Furthermore, the flexible network design empowers
TET-GAN to efficiently extend to a new text style via one-
shot learning where only one example is required. We demon-
strate the superiority of the proposed method in generating
high-quality stylized text over the state-of-the-art methods.

Introduction
Text effects are additional style features for text, such as co-
lors, outlines, shadows, reflections, glows and textures. Ren-
dering text in the style specified by the example stylized
text is referred to as text effects transfer. Applying visual ef-
fects to text is very common yet important in graphic design.
However, manually rendering text effects is labor intensive
and requires great skills beyond normal users. In this work,
we propose a neural network architecture that automatically
synthesizes high-quality text effects on arbitrary glyphs.

The success of the pioneering Neural Style Transfer (Ga-
tys, Ecker, and Bethge 2016) has sparked a research boom
of deep-based image stylization. The key idea behind it is
to match the global feature distributions between the style
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Figure 1: Overview: Our TET-GAN implements two functi-
ons: destylization for removing style features from the text
and stylization for transferring the visual effects from highly
stylized text onto other glyphs.

image and the generated image (Li et al. 2017a) by mini-
mizing the difference of Gram matrices (Gatys, Ecker, and
Bethge 2015). However, this global statistics representation
for general styles does not apply to the text effects. Text ef-
fects are highly structured along the glyph and cannot be
simply characterized as the mean, variance or other global
statistics (Li et al. 2017a; Dumoulin, Shlens, and Kudlur
2016; Huang and Belongie 2017; Li et al. 2017c) of the tex-
ture features. Instead, the effects should be learned with the
corresponding glyphs. For this reason, we develop a new text
effects dataset, driven by which we show our network can
learn to properly rearrange textures to fit new glyphs.

From a perspective of texture rearrangement, modelling
the style of text effects using local patches seems to be more
suitable than global statistics. Valuable efforts have been
devoted to patch-based style transfer (Li and Wand 2016a;
Chen and Schmidt 2016; Yang et al. 2017). The recent work
of (Yang et al. 2017) is the first study of text effects transfer,
where textures are rearranged to correlated positions on text
skeleton. However, matching patches in the pixel domain,
this method fails to find proper patches if the target and ex-
ample glyphs differ a lot. The recent deep-based methods (Li
and Wand 2016a; Chen and Schmidt 2016) address this is-
sue by matching glyphs in the feature domain, but they use
a greedy optimization, causing the disorder of the texture
in the spatial distribution. To solve this problem, we intro-
duce a novel distribution-aware data augmentation strategy
to constrain the spatial distribution of textures.



To handle a particular style, researchers have looked at
style modeling from images rather than using general sta-
tistics or patches, which refers to image-to-image transla-
tion (Isola et al. 2017). Early attempts (Isola et al. 2017; Zhu
et al. 2017) train generative adversarial networks (GAN) to
map images from two domains, which is limited to only two
styles. StarGAN (Choi et al. 2018) employs one-hot vectors
to handle multiple pre-defined styles, but requires expensive
data collection and retraining to handle new styles. We im-
prove these approaches by designing a novel Texture Effects
Transfer GAN (TET-GAN), which characterizes glyphs and
styles separately. By disentangling and recombining glyph
and visual effects features, we show that our network can si-
multaneously support stylization and destylization on a vari-
ety of text effects as shown in Fig. 1. In addition, having lear-
ned to rearrange textures based on glyphs, a trained network
can easily be extended to new user-specified text effects.

In this paper, we propose a novel approach for text effects
transfer with three distinctive aspects. First, we develop a
novel TET-GAN built upon encoder-decoder architectures.
The encoders are trained to disentangle content and style fe-
atures in the text effects images. Stylization is implemented
by recombining these two features while destylization by so-
lely decoding content features. The task of destylization to
completely remove styles guides the network to precisely
extract the content feature, which in turn helps the network
better capture its spatial relationship with the style feature
in the task of stylization. Second, in terms of data, we de-
velop a new text effects dataset with 53,568 image pairs to
facilitate training and further study. In addition, we propose
a distribution-aware data augmentation strategy to impose
a distribution constraint (Yang et al. 2017) for text effects.
Driven by the data, our network learns to rearrange visual
effects according to the glyph structure and its correlated po-
sition on the glyph as a professional designer does. Finally,
we propose a self-stylization training scheme for one-shot
learning. Leveraging the skills that have been learned from
our dataset, the network only needs to additionally learn to
reconstruct the texture details of one example, and then it
can generate the new style on any glyph.

In summary, our contributions are threefold:
• We raise a novel TET-GAN to disentangle and recom-

bine glyphs and visual effects for text effects transfer. The
explicit content and style representations enable effective
stylization and destylization on multiple text effects.

• We introduce a new dataset containing thousands of
professionally designed text effects images, and pro-
pose a distribution-aware data augmentation strategy for
distribution-aware style transfer.

• We propose a novel self-stylization training scheme that
requires only a few or even one example to learn a new
style upon a trained network.

Related Work
Neural style transfer. Style transfer is the task of migra-
ting styles from an example style image to a content image,
which is closely related to texture synthesis. The pioneer-
ing work of (Gatys, Ecker, and Bethge 2016) demonstrates

the powerful representation ability of convolutional neural
networks to model textures. Gatys et al. formulated tex-
tures as the correlation of deep features in the form of a
Gram matrix (Gatys, Ecker, and Bethge 2015), and transfer-
red styles by matching high-level representations of the con-
tent image and the Gram matrices. Since then, deep-based
style transfer has become a hot topic, and many follow-
up work improves it in different aspects such as accele-
ration (Johnson, Alahi, and Li 2016; Ulyanov et al. 2016;
Wang et al. 2017), user controls (Gatys et al. 2017) and style
diversification (Li et al. 2017b). In parallel, Li et al. (2016a;
2016b) modelled textures by local patches of feature maps,
which can transfer photo-realistic styles.

Image-to-image translation. Image-to-image translation
is a domain transfer problem, where the input and output are
both images. Driven by the great advances of GAN, once
been introduced by (Isola et al. 2017), it has been widely
studied. Recent work (Murez et al. 2018) has been able to
generate very high-resolution photo-realistic images from
semantic label maps. Zhu et al. (2017) proposed a novel
cycle loss to learn the domain translation without paired
input-output examples. While most researches focus on the
translation between two domains, Choi et al. (2018) utili-
zed a one-hot vector to specify the target domain, so that the
network can learn the mapping between multiple domains,
which provides more flexibility. However, extension to new
domains is still expensive. In this paper, we introduce a self-
stylization training scheme to efficiently learn a new style
with only one example required.

Text style transfer. Text is one of the most important vi-
sual elements in our daily life and there is some work on
style transfer specific to the text. Taking advantage of the
accessibility of abundant font images, many works (Lian,
Zhao, and Xiao 2016; Sun et al. 2018; Zhang, Zhang, and
Cai 2018) trained neural networks to learn stroke styles for
font transfer. However, another type of style, namely text ef-
fects, was not studied much. It was not until 2017 that the
work of (Yang et al. 2017) first raised text effects trans-
fer problem. The authors proposed to match and synthe-
size image patches based on their correlated position on the
glyph, which is vulnerable to glyph differences and has a he-
avy computational burden. Meanwhile, Azadi et al. (2018)
combined font transfer and text effects transfer using two
successive subnetworks and end-to-end trained them using
a synthesized gradient font dataset. However, they can only
handle 26 capital letters with a small size of 64 × 64, and
their synthesized dataset differs greatly from the actual text
effects. By contrast, we build our dataset using in-the-wild
text effects with a size of 320×320, supporting our network
to render exquisite text effects for any glyph.

TET-GAN for Text Effects Transfer
Our goal is to learn a two-way mapping between two dom-
ains X and Y , which represent a collection of text images
and text effects images, respectively. Our key idea is to train
a network to simultaneously accomplish two tasks: one to
combine text effects (style) with glyphs (content) for styliza-
tion, and another to remove text effects for destylization. As
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Figure 2: The TET-GAN architecture. (a) An overview of TET-GAN architecture. Our network is trained via three objectives of
autoencoder, destylization and stylization. (b) Glyph autoencoder to learn content features. (c) Destylization by disentangling
content features from text effect images. (d) Stylization by combining content and style features.

shown in Fig. 2, our framework consists of two content enco-
ders {EX , E

c
Y}, a style encoder {Es

Y}, two domain genera-
tors {GX , GY} and two domain discriminators {DX , DY}.
EX and Ec

Y map text images and text effects images onto
a shared content feature space, respectively, while Es

Y maps
text effects images onto a style feature space. GX generates
text images from the encoded content features.GY generates
text effects images conditioned on both the encoded content
features and style features. The discriminators are trained to
distinguish the generated images from the real ones.

Given these basic network components, we can define our
two-way mapping. The forward mapping (stylization) GY ◦
(EX , E

s
Y) : X × Y → Y requires a target raw text image x

and an example text effects image y′ as input, and transfers
the text effects in y′ onto x, obtaining y. Meanwhile, the
backward mapping (destylization) GX ◦Ec

Y : Y → X takes
y as the input, and extracts its corresponding raw text image
x. In addition, we further consider an autoencoderGX ◦EX :
X → X , which helps guide the training of destylization. Our
objective is to solve the min-max problem:

min
E,G

max
D
Lrec + Ldesty + Lsty, (1)

where Lrec, Ldesty, and Lsty are loss functions related to the
autoencoder reconstruction, destylization, and stylization,
respectively. In the following sections, we present the de-
tail of the loss functions and introduce our one-shot learning
strategy that enables the training with only one example.

Autoencoder
Reconstruction loss. First of all, the encoded content fea-
ture is required to preserve the core information of the glyph.
Therefore, we impose a reconstruction constraint that forces
the content feature to completely reconstruct the input text
image, leading to the standard autoencoder L1 loss:

Lrec = λrecEx[‖GX (EX (x))− x‖1]. (2)

Destylization
In the training of our destylization subnetwork, we sample
from the training set a text-style pair (x, y). We would like

to map x and y onto a shared content feature space, where
the feature can be used to reconstruct x. To achieve it, we
apply two strategies: weight sharing and content feature gui-
dance. First, as adopted in other domain transfer works (Liu,
Breuel, and Kautz 2017; Murez et al. 2018), the weights be-
tween the last few layers of EX and Ec

Y as well as the first
few layers of GX and GY are shared. Second, we propose a
feature loss to guide Ec

Y using the content feature extracted
by the autoencoder. The total loss takes the following form:

Ldesty = λdfeatLdfeat + λdpixLdpix + λdadvLdadv, (3)

where Ldfeat is the feature loss. Following the image-to-
image GAN framework (Isola et al. 2017), Ldfeat and Ldadv
are pixel and adversarial losses, respectively.

Feature loss. The content encoder is tasked to approach
the ground truth content feature. Let SX denote the sharing
layers of GX . Then the content feature for guidance is defi-
ned as z = SX (EX (x)) and our feature loss is:

Ldfeat = Ex,y[‖SX (Ec
Y(y))− z‖1]. (4)

Our feature loss guides the content encoder Ec
Y to remove

the style elements from the text effects image, preserving
only the core glyph information.

Pixel loss. The destylization subnetwork is tasked to ap-
proach the ground truth output in an L1 sense:

Ldpix = Ex,y[‖GX (Ec
Y(y))− x‖1]. (5)

Adversarial loss. We impose conditional adversarial loss
to imporve the quality of the generated results. We adopt
a conditional version of WGAN-GP (Gulrajani et al. 2017)
as our loss function, where DX learns to determine the au-
thenticity of the input text image and whether it matches the
given text effects image. At the same time,GX andEc

Y learn
to confuse DX :

Ldadv =Ex,y[DX (x, y)]− Ey[DX (GX (Ec
Y(y)), y)]

−λgpEx̂,y[(‖∇x̂DX (x̂, y)‖2 − 1)2],
(6)

where x̂ is defined as a uniformly sampling along the straight
line between the sampled real data x and the sampled gene-
rated data GX (Ec

Y(y)).
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Figure 3: One-shot text effects transfer. (a) User-specified
new text effects. (b) Stylization result on an unseen style.
(c) Stylization result after one-shot finetuning. (d) Randomly
crop the style image to generate image pairs for training.

Stylization
For the stylization subnetwork, we sample from the training
set a text-style pair (x, y) and a text effects image y′ that
shares the same style with y but has a different glyph. We
first extract the content feature from x and the style feature
from y, which are then concatenated and fed into GY to ge-
nerate a text effects image to approximate to the ground truth
y. The standard image-to-image GAN loss is used:

Lsty = λspixLspix + λsadvLsadv. (7)

Pixel loss. The stylization subnetwork is tasked to appro-
ach the ground truth output in an L1 sense:

Lspix = Ex,y,y′ [‖GY(EX (x), Es
Y(y

′))− y‖1]. (8)

Adversarial loss. Similar to the destylization subnet-
work, WGAN-GP (Gulrajani et al. 2017) is employed where
the discriminator’s decision is conditioned by both x and y′:

Lsadv =Ex,y,y′ [DY(x, y, y
′)]

−Ex,y′ [DY(x,GY(EX (x), Es
Y(y

′)), y′)]

−λgpEx,ŷ,y′ [(‖∇ŷDY(x, ŷ, y
′)‖2 − 1)2].

(9)

In the above equation, ŷ is similarly defined as x̂ in Eq. (6).
Note that we do not impose any other constraints (for ex-
ample, style autoencoder reconstruction: Y → Y and cy-
cle consistency: X × Y → Y → X ) on the style feature
extraction. We would like the network to learn appropriate
style representations purely driven by the data. In fact, we
have considered employing other common losses, but found
the results have little changes, which proves that our ob-
jective design has been robust enough to learn a smart way
of stylization from the data.

One-Shot Text Effects Transfer
Learning-based methods are heavily dependent on dataset
by nature and usually require thousands of images for trai-
ning. We have collected a text effects dataset, and our TET-
GAN can be well trained using this dataset to generate as

Figure 4: An overview of our text effects dataset.

(a) (b) (c)

Figure 5: Distribution-aware data augmentation. (a) Raw
text image. (b) Result of distribution-aware text image pre-
processing. (c) Result of distribution-aware text effects aug-
mentation by tinting (b) using random colormaps.

much as 64 different text effects. However, it is still quite
expensive with respect to date collection of user-customized
styles. To develop a system that supports personalized text
effects transfer, we build upon our well-trained TET-GAN,
and propose a novel “self-stylization” training scheme for
one-shot learning, where only one training pair is required.
Furthermore, we show that our network can be extended to
solve a more challenging unsupervised problem where only
one example style image is available.

One-shot supervised learning. As shown in Fig. 3(b), for
an unseen user-specified style, the network trained on our
dataset has learned to generate the basic structure of the text
effects. It only needs to be finetuned to better reconstruct the
texture details of the specified style. To achieve this goal,
we propose a simple and efficient “self-stylization” training
scheme. Specifically, as shown in Fig. 3(d), we randomly
crop the images to obtain a bunch of text effects images that
have the same style but differ in the pixel domain. They con-
stitute a training set to finetune our network to generate vivid
textures as shown in Fig. 3(c).

One-shot unsupervised learning. Our network architec-
ture gives us great flexibility. It is intuitive to exploit the de-
stylization subnetwork to generate the text image from the
new text effects image, and use this image pair for one-shot
supervised learning. In other word, x̃ = GX (Ec

Y(y)) is used
as an auxiliary x during the finetuning. However, the accu-
racy of x̃ cannot be guaranteed, which may mislead the ex-
traction of content features. To solve this problem, a style
autoencoder reconstruction loss is employed, which further
constrains the content features to reconstruct the input text
effects image with the style features:

Lsrec = λsrecEy[‖GY(E
c
Y(y), E

s
Y(y))− y‖1]. (10)

And our objective for unsupervised learning takes the form

min
E,G

max
D
Lrec + Ldesty + Lsty + Lsrec. (11)



(a) input (b) TET-GAN (c) TET-GAN (d) pix2pix (e) StarGAN (f) T-Effect (g) Doodle (h) NST

Figure 6: Comparison with state-of-the-art methods on various text effects. (a) Input example text effects with the target text
in the lower-left corner. (b) Our destylization results. (c) Our stylization results. (d) pix2pix-cGAN (Isola et al. 2017). (e)
StarGAN (Choi et al. 2018). (f) T-Effect (Yang et al. 2017). (g) Neural Doodles (Champandard 2016). (h) Neural Style Trans-
fer (Gatys, Ecker, and Bethge 2016).

Distribution-Aware Data Collection and
Augmentation

We propose a new dataset including 64 text effects each with
775 Chinese characters, 52 English letters and 10 Arabic nu-
merals, where the first 708 Chinese characters are for trai-
ning and others for testing. Fig. 4 shows an overview of these
text effects. Each text effects image has a size of 320× 320
and is provided with its corresponding text image. Our data-
set contains two text effects kindly provided by the authors
of (Yang et al. 2017). To generate other 62 text effects, we
first collected psd files released by several text effects web-
sites, or created psd files ourselves following the tutorials on
these websites. Then we used batch tools and scripts to au-
tomatically replace characters and produced 837 text effects
images for each psd file.

Distribution-aware text image preprocessing. As repor-
ted in (Yang et al. 2017), the spatial distribution of the tex-
ture in text effects is highly related to its distance from the
glyph, forming an effective prior for text effects transfer. To
leverage this prior, we propose a distribution-aware prepro-
cessing for the text image to directly feed our network with
distance cues. As shown in Fig. 5, we extend the raw text
image from one channel to three channels. The R channel is
the original text image, while G channel and B channel are
distance maps where the value of each pixel is its distance
to the background black region and the foreground white
glyph, respectively. Another advantage of the preprocessing

is that our three-channel text images have much fewer satu-
rated areas than the original ones, which greatly facilitates
the extraction of valid features.

Distribution-aware text effects augmentation. Besides
the text images, we further propose the distribution-aware
augmentation of the text effects images. The key idea is to
augment our training data by generating random text effects
based on the pixel distance from the glyph. Specifically, we
first establish a random colormap for each of the R and G
channels, which maps each distance value to a correspon-
ding color. Then we use the colormaps of the R and G chan-
nels to tint the background black region and the foreground
white glyph in the text image separately. Fig. 5(c) shows
an example of the randomly generated text effects images.
These images whose colors are distributed strictly according
to distance can effectively guide our network to discover the
spatial relationship between the text effects and the glyph.
In addition, data augmentation could also increase the gene-
ralization capabilities of the network.

Experimental Results
Implementation Details
Network architecture. We adapt our network architectures
from pix2pix-cGAN (Isola et al. 2017). The three encoders
use a same structure built with Convolution-BatchNorm-
ReLU layers, and the decoders are built with Deconvolution-
BatchNorm-LeakyReLU layers. The architecture of our two



(a) input (b) TET-GAN (c) TET-GAN2 (d) T-Effect (e) Doodle

Figure 7: Comparison with other methods on one-shot su-
pervised style transfer. (a) Example text effects and the tar-
get text. (b) Our results. (c) Results of our network without
pretraining. (d) T-Effect (Yang et al. 2017). (e) Neural Dood-
les (Champandard 2016)

discriminators follows PatchGAN (Isola et al. 2017). We
add skip connections between the sharing layers of encoders
and decoders so that they form a UNet (Ronneberger, Fis-
cher, and Brox 2015). By doing so, our network can capture
both low-level and high-level features. Considering Instance
Normalization (IN) (Ulyanov, Vedaldi, and Lempitsky 2017)
can better characterize the style of each image instance for a
robust style removal than Batch Normalization (BN) (Ioffe
and Szegedy 2015), we further replace BN with IN in Ec

Y ,
which can effectively improve the destylization results.

Network training. We train the network on the propo-
sed dataset. All images are cropped to 256 × 256 and one
quarter of the training samples use the augmented text ef-
fects. To stabilize the training of GAN, we follow the very
recent works of progressive training strategies (Karras et al.
2018). The inner layers of our generators are first trained on
downsampled 64 × 64 images. Outer layers are then added
progressively to increase the resolution of the generated ima-
ges until the original resolution is reached. When new layers
are added to the encoders, we fade them in smoothly to avoid
drastic network changes (Karras et al. 2018). Adam optimi-
zer is applied with a fixed learning rate of 0.0002 and a batch
size of 32, 16 and 8 for image size of 64 × 64, 128 × 128
and 256 × 256, respectively. For all experiments, we set
λdfeat = λdpix = λspix = λrec = λsrec = 100, λgp = 10,
and λdadv = λsadv = 1.

Comparison with State-of-the-Art
In Fig. 6, we present a comparison of our network with five
state-of-the-art style transfer methods. The first two met-
hods, pix2pix-cGAN and StarGAN, both employ GAN for
domain transfer, and can be trained on our dataset to handle
text effects. To order to allow pix2pix-cGAN to handle mul-
tiple styles, we change its input from a single text image
to a concatenation of three images: the example text ef-
fects image, its corresponding glyph and the target glyph.
Pix2pix-cGAN fails to completely adapt the style image to

(a) input (b) TET-GAN (c) Quilting (d) NST (e) CNNMRF

Figure 8: Comparison with other methods on one-shot unsu-
pervised style transfer. (a) Example text effects and the tar-
get text. (b) Our results. (c) Image Quilting (Efros and Free-
man 2001). (d) Neural Style Transfer (Gatys, Ecker, and
Bethge 2016). (e) CNNMRF (Li and Wand 2016a)

the new glyphs, creating some ghosting artifacts. Meanw-
hile, the texture details are not fully inferred, leaving some
flat or over-saturated regions. StarGAN learns some color
mappings, but fails to synthesize texture details and suffers
from distinct checkerboard artifacts. The following three
methods are designed for zero-shot style transfer. T-Effect
and Neural Doodles synthesize textures using local patches
under the glyph guidance of the example image. T-Effect
processes patches in the pixel domain, leading to obvious co-
lor discontinuity. Instead, Neural Doodles uses deep-based
patches for better patch fusion but fails to preserve the shape
of the text. Neural Style Transfer cannot correctly find the
correspondence between the texture and text, creating in-
terwoven textures. By comparison, our network learns valid
glyph features and style features, thus precisely transferring
text effects with the glyph well protected. We additionally
show our destylization results in the second column, where
the style features are effectively removed.

We compare our network with T-Effect and Neural Dood-
les on supervised stylization with only one observed exam-
ple pair in Fig. 7. Our method is superior to Neural Doodles
in glyph preservation and is comparable to T-Effect. More
importantly, in terms of efficiency, T-Effect takes about one
minute per image, while our method only takes about 20ms
per image after a three-minute finetuning. In addition, as
shown in Fig. 7(c), if trained from scratch, the performance
of our network drops dramatically, verifying that pretraining
on our dataset successfully teaches our network the dom-
ain knowledge of text effects synthesis. In Fig. 8, we further
compare with three methods on the challenging unsupervi-
sed stylization with only one observed example, where the
advantages of our approach are more pronounced.

Ablation Study
In Fig. 9, we study the effect of the reconstruction loss
(Eq. (4)) and the feature loss (Eq. (2)). Without these two
losses, even the color palette of the example style is not cor-



(a) input (b) (c) (d)

Figure 9: Effect of the reconstruction loss and feature loss.
(a) Input. (b) Model without Lrec and Ldfeat. (c) Model wit-
hout Ldfeat. (d) Full model.

(a) input (b) w/o pre+aug (c) w/o aug (d) full model

Figure 10: A comparison of results with and without our
distribution-aware data preprocessing and augmentation.

rectly transferred. In Fig. 9(c), the glyph is not fully disen-
tangled from the style, leading to annoying bleeding arti-
facts. The satisfying results in Fig. 9(d) verify that our fea-
ture loss effectively guides TET-GAN to extract valid con-
tent representations to synthesize clean text effects.

In Fig. 10, we examine the effect of our distribution-
aware text image preprocessing and text effects augmen-
tation through a comparative experiment. Without the pre-
processing and augmentation, the inner flame textures are
not synthesized correctly. As can be seen in Fig. 10(d), our
distribution-aware data augmentation strategy helps the net-
work learn to infer textures based on their correlated position
on the glyph, and thus the problem is well solved.

Application
The flexibility of TET-GAN is further manifested by two
applications: style exchange and style interpolation. First,
we can exchange the styles from two text effects images as
shown in Fig. 11(a). It is accomplished by extracting the gly-
phs using the destylization subnetwork and then applying
the styles to each other using the stylization subnetwork.
Second, the explicit style representations enable intelligent
style editing. Fig. 11(b) shows an example of style fusion.
We interpolate between four different style features, and de-
code the integrated features back to the image space, obtai-
ning brand-new text effects.

Failure Case
While our approach has generated appealing results, some
limitations still exist. Our destylization subnetwork is not
fool-proof due to the extreme diversity of the text effects,
which may totally differ from our collected text effects.
Fig. 12 shows a failure case of one-shot unsupervised text
effects transfer. Our network fails to recognize the glyph. As
a result, in the stylization result, the text effects in the fore-
ground and background are reversed. This problem can be

: :: :

: :: :

S (input) T’ (input)S’ (output) T’ (output)

(b) style interpolation

(a) style exchange

Figure 11: Applications of TET-GAN.

(a) (b) (c) (d) (e) (f)

Figure 12: User-interactive unsupervised style transfer. (a)
Example text effects and the target text. (b)(c) Our desty-
lization and stylization results after finetuning. (d) A mask
provided by the user, where the blue and red regions indicate
the background and foreground, respectively. (e)(f) Our de-
stylization and stylization results with the help of the mask.

possibly solved by user interaction. Users can simply paint a
few strokes (Fig. 12(d)) to provide a priori information about
the foreground and the background, which is then fed into
the network as a guidance to constrain the glyph extraction
and thereby improve the style transfer results (Fig. 12(f)).

Conclusion
In this paper, we present a novel TET-GAN for text effects
transfer. We integrate stylization and destylization into one
uniform framework to jointly learn valid content and style
representations of the artistic text. Exploiting explicit style
and content representations, TET-GAN is able to transfer,
remove and edit dozens of styles, and can be easily customi-
zed with user-specified text effects. In addition, we develop
a dataset of professionally designed text effects to facilitate
researches. Experimental results demonstrate the superiority
of TET-GAN in generating high-quality artistic typography.
As a future direction, one may explore other more sophi-
sticated style editing methods, such as background replace-
ment, color adjustment and texture attribute editing.
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